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Abstract

We construct non-local artificial boundary conditions (ABCs) for the numerical simulation of genuinely time-de-

pendent acoustic waves that propagate from a compact source in an unbounded unobstructed space. The key property

used for obtaining the ABCs is the presence of lacunae, i.e., sharp aft fronts of the waves, in wave-type solutions in odd-

dimension spaces. This property can be considered a manifestation of the Huygens� principle. The ABCs are obtained

directly for the discrete formulation of the problem. They truncate the original unbounded domain and guarantee the

complete transparency of the new outer boundary for all the outgoing waves. A central feature of the proposed ABCs is

that the extent of their temporal non-locality is fixed and limited, and it does not come at the expense of simplifying the

original model. It is rather a natural consequence of the existence of lacunae, which is a fundamental property of the

corresponding solutions. The proposed ABCs can be built for any consistent and stable finite-difference scheme. Their

accuracy can always be made as high as that of the interior approximation, and it will not deteriorate even when in-

tegrating over long time intervals. Besides, the ABCs are most flexible from the standpoint of geometry and can handle

irregular boundaries on regular grids with no fitting/adaptation needed and no accuracy loss induced. Finally, they allow

for a wide range of model settings. In particular, not only one can analyze the simplest advective acoustics case with the

uniform background flow, but also the case when the waves� source (or scatterer) is engaged in an accelerated motion.
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1. Introduction

Artificial boundary conditions (ABCs) is a common name for a group of methods employed for solving

infinite-domain problems on a computer. ABCs facilitate truncation of the original unbounded domain and
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provide the required closure for the resulting truncated formulation. The literature on the subject of ABCs

is broad, and we refer the reader to the review papers [1–3].

Two opposite trends can be identified in building the ABCs. High accuracy requirements typically imply

that the ABCs should be non-local. In particular, the exact ABCs are always non-local in multidimensional

settings. For unsteady problems, this also means non-locality in time. Clearly, non-locality of the ABCs

may result in high computational costs and elaborate implementation strategies. As such, local alternatives

obtained either independently or as a approximations of non-local ABCs become viable. These ABCs are

usually inexpensive and easy to implement, but may lack computational accuracy.
In the current paper we propose the ABCs for the numerical simulation of non-dispersive unsteady

acoustic waves. We assume that there is a (complex) phenomenon/process confined to a bounded region

that manifests itself by the radiation of acoustic waves in the far field. The waves subsequently propagate

across the unbounded and unobstructed space, which is assumed isotropic and homogeneous. The pro-

posed ABCs are non-local and guarantee that the accuracy of the boundary treatment can always be made

at least as high as that of the interior discretization. However, the key feature of the proposed ABCs is that

the extent of their temporal non-locality is limited, and does not increase as the time elapses. The bound on

temporal non-locality comes as a consequence of the presence of lacunae, i.e., sharp aft fronts of the waves,
in the solutions of the linearized Euler equations. In general, existence of the lacunae is a fundamental

property of wave-type solutions in odd-dimension spaces. It is often referred to in connection with the

Huygens� principle.
The ABCs are constructed by decomposing the original problem into the interior and auxiliary sub-

problems. The latter is linear and homogeneous throughout the entire space and is integrated with the help

of lacunae. In so doing, the interior solution is used to generate sources for the auxiliary problem, and the

auxiliary solution is used to provide the missing boundary data, i.e., the require closure, for the interior

problem.
Several other non-local ABCs� methodologies for unsteady waves have been recently advocated in the

literature, most notably [4–10]; we also mention the survey paper [11] and the bibliography there. Com-

pared to these techniques our approach has a number of distinctive characteristics. Its high accuracy and

restricted temporal non-locality have already been mentioned. Besides, the proposed lacunae-based ABCs

are obtained directly for the discrete formulation of the problem, and can supplement any consistent and

stable finite-difference scheme. In other words, they bypass the common stages of first deriving and then

approximating the continuous ABCs, see [2]. The lacunae-based ABCs are especially designed to withstand

long-term numerical integration with no deterioration of accuracy. Moreover, neither they are restricted to
any particular shape of artificial boundary nor require grid fitting. They also enable analysis of a variety of

problem formulations, e.g., the case of sound sources moving with acceleration, which is equivalent to

advective acoustics with unsteady background flow. We note that the source motion does not have to be

considered relative to an ambient medium only. Via the appropriate Galileo transform it can be considered

relative to a given mean flow as well.

The ABCs that we derive in the current paper for acoustics generalize and further extend our previous

work [12,13], in which a similar methodology was introduced for the scalar wave equation. The current

approach also fits into the general theoretical framework of [14].
2. Lacunae of the wave equation

Consider a three-dimensional wave equation, x ¼ ðx1; x2; x3Þ:

1

c2
o2u
ot2

� o2u
ox21

�
þ o2u

ox22
þ o2u

ox23

�
¼ f ðx; tÞ; tP 0; ð1aÞ
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ujt¼0 ¼ ou
ot

����
t¼0

¼ 0; ð1bÞ

with homogeneous initial conditions. For every ðx; tÞ, the solution u ¼ uðx; tÞ of problem (1a), (1b) is given

by the Kirchhoff integral (see, e.g. [15])

uðx; tÞ ¼ 1

4p

Z Z Z
.6 ct

f n; t � .=cð Þ
.

dn; ð2Þ

wheren ¼ ðn1; n2; n3Þ, . ¼ jx � nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � n1Þ2 þ ðx2 � n2Þ2 þ ðx3 � n3Þ2

q
, anddn ¼ dn1 dn2 dn3. Ifwe assume

that the right-hand side (RHS) f ðx; tÞ of Eq. (1a) is compactly supported in space-time on the domain

Q � R3 � ½0;þ1Þ, then formula (2) immediately implies that

uðx; tÞ � 0 for ðx; tÞ 2
\

ðn;sÞ2Q
ðx; tÞ j jxf � nj < cðt � sÞ; t > sg: ð3Þ

The region of space-time defined by formula (3) is called lacuna of the solution u ¼ uðx; tÞ. This region is

obtained as the intersection of all characteristic cones of Eq. (1a) once the vertex of the cone sweeps the

support of the RHS: suppf � Q. From the standpoint of physics, lacuna corresponds to that part of space-

time, on which the waves generated by the sources f ðx; tÞ, suppf � Q, have already passed, and the so-
lution has become zero again. The phenomenon of lacunae is inherently three-dimensional. The surface of

the lacuna represents the trajectory of aft (trailing) fronts of the waves. The existence of aft fronts in odd-

dimension spaces is known as the Huygens� principle, as opposed to the so-called wave diffusion which

takes place in even-dimension spaces, see, e.g. [15]. Let us also note that the aft fronts and the lacunae

would still be present in the solution of the wave equation (1a) if the homogeneous initial conditions (1b)

were replaced by some inhomogeneous initial conditions with compact support.

The notion of lacunae (or lacunas) was first introduced and studied by Petrowsky in [16] (see also an

account in [17, Chapter VI]) for a variety of hyperbolic equations and systems; and general characterization
of their coefficients was provided that would guarantee existence of the lacunae. However, since work [16]

no constructive examples of either equations or systems have been obtained for which lacunae would be

present in the solutions, besides the actual wave equation (1a), as well as those equations that either reduce

to or are derived from, the wave equation.
3. The acoustics system of equations

The acoustics (linearized Euler�s) system in its simplest form governs the propagation of sound in an

ambient compressible fluid [18, Chapter VIII]

1

c2
op
ot

þ q0r � u ¼ q0qvol;

q0

ou

ot
þ rp ¼ bvol:

ð4Þ

In (4), c is the speed of sound, and the variables u ¼ uðx; tÞ and p ¼ pðx; tÞ represent small perturbations of

the velocity and pressure, respectively. Adiabatic law p ¼ c2q has been applied that relates p to the density

perturbation q. The quantity q0 is the constant background density. The source term qvol ¼ qvolðx; tÞ that

alters the balance of mass in the system is known as volume velocity per unit volume, and the source term

bvol ¼ bvolðx; tÞ that alters the balance of momentum is known as force per unit volume (see, e.g. [19]).
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Proposition 1. Assume that the initial velocity field is conservative: uðx; 0Þ ¼ ru0ðxÞ. Then, the velocity
potential exists in the solutions of system (4) for all tP 0 if and only if the forcing bvol is also conservative:
bvolðx; tÞ ¼ rwðx; tÞ. In this case, the potential satisfies the wave equation.

Proof. Let us assume that the force field is conservative, and integrate the second equation of system (4)

with respect to time starting from t ¼ 0:

q0uðx; tÞ ¼ q0uðx; 0Þ �
Z t

0

rpðx; sÞds þ
Z t

0

bvolðx; sÞds

¼ q0ru0ðxÞ �
Z t

0

rpðx; sÞds þ
Z t

0

rwðx; sÞds

¼ r q0u0ðxÞ
�

�
Z t

0

pðx; sÞds þ
Z t

0

wðx; sÞds

	
¼defq0ruðx; tÞ: ð5Þ

Therefore, we obtain

uðx; tÞ ¼ ruðx; tÞ; q0

ouðx; tÞ
ot

¼ �pðx; tÞ þ wðx; tÞ; ð6Þ

and by differentiating the second relation in (6) w.r.t. time and subsequently substituting it into the first

equation of system (4), we conclude that the potential u ¼ uðx; tÞ defined by (5) will satisfy the wave

equation (1a) with the RHS given by

f ðx; tÞ ¼ �qvolðx; tÞ þ 1

q0c2
owðx; tÞ

ot
:

Conversely, let us assume that the velocity field is conservative: uðx; tÞ ¼ ruðx; tÞ. Then, the momentum

equation in system (4) can be recast as follows:

r q0

ou
ot

�
þ p

	
¼ bvol;

which means that the forcing must be conservative: bvolðx; tÞ ¼ rwðx; tÞ. �

Proposition 1 also implies that if bvolðx; tÞ � 0 then the potential always exists. In this case, the second

equality of (6) reduces to the conventional relation between the potential and pressure: q0ðou=otÞ ¼ �p, see
[18, Chapter VIII].

Applying the gradient operator to the wave equation for the potential, we conclude that the velocity
vector also satisfies the wave equation

1

c2
o2u

ot2
� Du ¼ �rqvol þ

1

q0c2
obvol

ot
: ð7Þ

Next, by differentiating the first equation of (4) with respect to time, taking the divergence of the second

equation of (4), and substituting the result into the first one, we arrive at the wave equation for p:

1

c2
o2p
ot2

� Dp ¼ �r � bvol þ q0

oqvol

ot
: ð8Þ

The key consideration of interest is that if the RHSs of system (4) are compactly supported in space and

time on some domain Q � R3 � ½0;þ1Þ, then the RHSs of both Eqs. (7) and (8) will also be compactly
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supported on the same domain Q. Consequently, solutions of Eqs. (7) and (8) will have lacunae of the same

shape as prescribed by formula (3). Thus, we have arrived at the following:

Proposition 2. Let the RHSs of system (4) be compactly supported in space and time: suppqvolðx; tÞ � Q and
suppbvolðx; tÞ � Q, where Q � R3 � ½0;þ1Þ. Let also uðx; tÞ ¼ ruðx; tÞ. Then, solutions of the acoustics
system (4) with homogeneous initial conditions will have lacunae of the same geometry as provided by formula
(3).

In other words, we have shown that existence of the velocity potential is sufficient for the acoustics

system (4) to have lacunae in its solutions; and that the geometry of the lacunae is determined by that of the

support of the RHSs, as in the case of the wave equation. We do not know whether this condition is also

necessary for having the lacunae. However, in the view of the comment provided in the end of Section 2, we

will hereafter be using the foregoing sufficient condition as the only reliable indication of the presence of

lacunae in the solutions of system (4).

The group of numerical algorithms for acoustics that we describe hereafter will be essentially based on
the presence of lacunae. However, the Kirchhoff formula (2) will never be used as an actual part of the

algorithm construction, it will only be needed at the theoretical stage, for determining the shape of the

lacunae that will later be incorporated into a purely finite-difference context. Previously, the idea of using

the Huygens� principle for constructing the ABCs was promoted by Ting and Miksis [20] and Givoli and

Cohen [21]. Both papers, however, have suggested to use numerical quadratures to approximate the integral

(2), and then couple it with the interior solution. Moreover, the approach of [20] has never been actually

implemented in a practical computational setting, whereas the approach of [21] required artificial dissi-

pation to be added to the scheme to fix the arising instabilities.
4. Lacunae-based integration of the acoustics system

We will be looking for an irrotational solution of system (4) on a bounded domain S ¼ SðtÞ � R3. We

assume that this is a domain of fixed shape that has a finite diameter d for all tP 0. We also assume that

8tP 0 : fsuppqvolðx; tÞ \ R3g � SðtÞ & fsuppbvolðx; tÞ \ R3g � SðtÞ. In other words, we want to compute

the acoustic field on a given domain that also contains all the field sources. While always remaining finite in
size, this domain SðtÞ is allowed to move across the space R3 according to a general law

u0 ¼ u0ðtÞ; x0 ¼ x0ðtÞ ¼
Z t

0

u0ðsÞds; ð9Þ

where u0 and x0 are the velocity vector and coordinates of a given point inside SðtÞ, respectively. The only

limitation that we impose is that motion (9) be subsonic: maxt ju0ðtÞj ¼ k < c. Let now ~qqvol and
~bbvol be some

stationary acoustic sources (RHSs to system (4)), i.e., compactly supported functions of x on the fixed

domain Sð0Þ for all tP 0: fsupp ~qqvolðx; tÞ \ R3g � Sð0Þ & fsupp~bbvolðx; tÞ \ R3g � Sð0Þ. Then, we can in-

corporate the translational motion (9) into the acoustics system (4) as follows, see [12]:

1

c2
opðx; tÞ

ot
þ q0r � uðx; tÞ ¼ q0~qqvolðx � x0ðtÞ; tÞ � q0qvolðx; tÞ;

q0

ouðx; tÞ
ot

þ rpðx; tÞ ¼ ~bbvolðx � x0ðtÞ; tÞ � bvolðx; tÞ:
ð10Þ

With no loss of generality, the initial conditions for integrating system (10) will always be assumed ho-

mogeneous. It is easy to see from (10) that the time-dependent nature of the acoustic field is caused by the
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motion of the sound sources, on which the genuine unsteadiness of the sound generating mechanisms may

be ‘‘superimposed.’’ The domain of integration SðtÞ has a fixed size/shape and traces the motion of the

sources. As shown in [12, Appendix] using the Galileo transform, system (10) is equivalent to advective

acoustics with stationary sources and unsteady background flow �u0 ¼ �u0ðtÞ.
Let us emphasize that the setup we have introduced is quite general and also includes the case of the

waves� sources that move relative to a given mean flow (rather than relative to the ambient fluid only).

Indeed, a similar argument based on the Galileo transform would imply that having the mean flow v0 and

the source motion u0 on top of it is equivalent to either stationary sources in the mean flow v0 � u0 or
alternatively, sources that move with the velocity �v0 þ u0 through the ambient medium. The latter setup is

obviously the same as (9), as long as the condition maxt j � v0ðtÞ þ u0ðtÞj ¼ k < c is met.

The case of primary interest for our analysis will be that of continuously operating sources in (10),

t 2 ½0;þ1Þ. Let us, however, assume for the time being that not only the RHSs in system (10) are compactly

supported in space, but also that their ‘‘lifespan’’ in time is finite: suppqvolðx; tÞ 2 Q and suppbvolðx; tÞ 2 Q,

where R3 � ½0;þ1Þ 3 Q ¼ fðx; tÞ jx 2 SðtÞ; t0 6 t6 t1g. Then, Proposition 2 implies that no later than

t ¼ t2 � t0 þ d þ ðt1 � t0Þðc þ kÞ
c � k

� t0 þ Tint ð11Þ

all of the domain SðtÞ will fall into the lacuna defined by formula (3) (see [12,13] for a more detailed ar-
gument), and will remain inside the lacuna continuously thereafter, i.e., for all tP t2. In other words, for the

solution of system (10), we will have pðx; tÞ ¼ 0 and uðx; tÞ ¼ 0 when x 2 SðtÞ and tP t2, where t2 is defined

by formula (11).

Next, we realize that during the time interval Tint no wave can travel in space further away than the

distance cTint from the boundary of the domain Sðt0Þ. This means that we will also have pðx; tÞ ¼ 0 and

uðx; tÞ ¼ 0 for distðx; Sðt0ÞÞ > cTint and t0 6 t6 t2. As such, instead of the free unobstructed space outside

SðtÞ we may consider outer boundaries with arbitrary (reflecting) properties. As long as none of these

boundaries is located closer than cTint to Sðt0Þ, the solution of (10) inside SðtÞ is not going to feel their
presence for t0 6 t6 t2.

In fact, the foregoing limitation for the location of outer boundaries can even be relaxed if instead of

requiring that no wave may reach an outer boundary before t ¼ t2 we introduce a weaker requirement that

no reflected wave may reach SðtÞ before t ¼ t2. The latter consideration easily translates into the following

estimate for the minimal distance between the domain Sðt0Þ and the allowed location of any reflecting

boundary (see [12,13] for more detail)

Zmin ¼ c þ k
2

Tint: ð12Þ

We note that both estimates (11) and (12) are conservative in the sense that they do not take into account

the direction of the motion. In case the motion of the sources is characterized by a specific or predominant
direction, then the quantity Zmin can be further reduced in the orthogonal directions.

Altogether we conclude that the solution of system (10) driven by the sources compactly supported on the

domain Q ¼ fðx; tÞ jx 2 SðtÞ; t0 6 t6 t1g and subject to the homogeneous initial conditions, can be obtained

on SðtÞ for all tP 0 as follows. First, this solution is obviously equal to zero for 06 t < t0. Next, on the time

interval t0 6 t6 t2, see formula (11), system (10) should be integrated on the auxiliary domain of size

Z ¼ d þ 2Zmin ¼ d þ ðc þ kÞTint ð13Þ

centered around Sðt0Þ, which in any event is going to yield the correct solution inside SðtÞ. Finally, for all

tP t2 the solution on SðtÞ will be equal to zero again because all the waves will have left the domain by
t ¼ t2 (lacuna).
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Let us now address the case of continuously operating sources. For that purpose, we introduce a par-

tition of unity on the semi-infinite interval tP 0:

8tP 0 :
X1
j¼0

Hðt � rTjÞ ¼ 1; ð14Þ

where T > 0 and 1
2
6 r < 1 are two parameters, and H ¼ HðtÞ is a smooth, even, ‘‘hat’’-type function with

suppHðtÞ � ½�T=2; T =2�:

HðtÞ ¼
0; t > T

2
;

1; 06 t6 ðr � 1
2
ÞT ;

1 � HðrT � tÞ; ðr � 1
2
ÞT < t6 T

2
;

Hð�tÞ; t < 0:

8>><
>>: ð15Þ

Then, we define compactly supported sources for j ¼ 0; 1; 2; . . . ;

qðjÞ
volðx; tÞ ¼ qvolðx; tÞHðt � rTjÞ; suppqðjÞ

volðx; tÞ � Qj;

b
ðjÞ
volðx; tÞ ¼ bvolðx; tÞHðt � rTjÞ; suppb

ðjÞ
volðx; tÞ � Qj;

ð16Þ

where according to (15)

Qj ¼ ðx; tÞ
����x 2 SðtÞ; rj

��
� 1

2

�
T 6 t6 rj

�
þ 1

2

�
T
�
; ð17Þ

and consider a collection of sub-problems driven by the RHSs (16)

1

c2
opðjÞ

ot
þ q0r � uðjÞ ¼ q0q

ðjÞ
vol; q0

ouðjÞ

ot
þ rpðjÞ ¼ b

ðjÞ
vol;

pðjÞðx; tÞjt¼ðrj�1
2
ÞT ¼ 0; uðjÞðx; tÞjt¼ðrj�1

2
ÞT ¼ 0:

ð18Þ

As formula (14) is a partition of unity, we have

qvolðx; tÞ ¼
X1
j¼0

qðjÞ
volðx; tÞ and bvolðx; tÞ ¼

X1
j¼0

b
ðjÞ
volðx; tÞ;

and because of the linear superposition, the solution pðx; tÞ, uðx; tÞ of system (10) subject to the homoge-

neous initial conditions at t ¼ 0 can be expanded in terms of the solutions to systems (18)

pðx; tÞ ¼
X1
j¼0

pðjÞðx; tÞ and uðx; tÞ ¼
X1
j¼0

uðjÞðx; tÞ: ð19Þ

The series (19) are formally infinite. However, for any t > 0 and x 2 SðtÞ each will, in fact, contain only a

finite fixed number of nonzero terms. Indeed, due to the causality for a given t > 0 and all ðrj � 1
2
ÞT > t, i.e.,

all j > ð tT þ 1
2
Þ=r, we will have pðjÞðx; tÞ ¼ 0 and uðjÞðx; tÞ ¼ 0 on the entire space R3. Moreover, multipli-

cation by the function H, see (16), that is only a function of time will not alter the conservative nature of

bvol. Therefore, Proposition 2 will apply to the solution of every problem (18), j ¼ 0; 1; 2; . . . As such, if we

interpret the moment ðrj � 1
2
ÞT of the inception of source j as tðjÞ0 , and the moment ðrj þ 1

2
ÞT of its cessation

as tðjÞ1 , then according to formula (11)

8t > rj
�

� 1

2

�
T þ d þ T ðc þ kÞ

c � k
� tðjÞ0 þ Tint : pðjÞðx; tÞ ¼ 0 and uðjÞðx; tÞ ¼ 0 for x 2 SðtÞ; ð20Þ
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i.e., the domain SðtÞ will be entirely inside the lacuna starting from tðjÞ2 ¼ tðjÞ0 þ Tint. Alternatively, this means

that for any t > 0 and all j < ½ðt � Tint=T Þ þ ð1=2Þ�=r, where Tint ¼ ½d þ T ðc þ kÞ�=ðc � kÞ as in formula (20),

the terms pðjÞðx; tÞ and uðjÞðx; tÞ in the series (19) will be equal to zero for x 2 SðtÞ. Consequently, for all

t > 0 and x 2 SðtÞ we can replace expansions (19) with

pðx; tÞ ¼
Xm2

j¼m1

pðjÞðx; tÞ and uðx; tÞ ¼
Xm2

j¼m1

uðjÞðx; tÞ; ð21Þ

where

m1 ¼ t � Tint

T

�
þ 1

2

��
r

� 	
; m2 ¼ t

T

�
þ 1

2

��
r

� 	
þ 1;

and ½�� denotes the integer part. This implies that for any t > 0 and x 2 SðtÞ the number of terms

m ¼ m2 � m1 þ 1 in the sum (21), and as such, the number of non-zero terms in the expansion (19), may not

exceed ½Tint=rT � þ 2. Most important, this number m does not increase as the time t elapses, because the

interval Tint introduced in (20) depends only on the partition size T for the sources, the geometry, the

propagation speed, and the maximum speed of motion.

Let us now assume that each problem (18) is integrated individually on an appropriate domain of size Z,
see formula (13), by means of a consistent and stable finite-difference scheme. For every given j, system (18)

only needs to be integrated from tðjÞ0 ¼ ðrj � 1
2
ÞT till tðjÞ2 ¼ tðjÞ0 þ Tint because for all subsequent moments of

time its solution on SðtÞ will be equal to zero. Consequently, the following convergence estimates will hold

for tðjÞ0 6 t6 tðjÞ2 and x 2 SðtÞ:

kpðjÞðx; tÞ � pðjÞ
h ðx; tÞk6Kjha;

kuðjÞðx; tÞ � u
ðjÞ
h ðx; tÞk6Kjha;

ð22Þ

where a is the order of convergence, h denotes the generic grid size, and the functions pðjÞ
h ðx; tÞ and u

ðjÞ
h ðx; tÞ

denote the discrete solution of system (18) for a given j. The constant Kj on the right-hand side of each

inequality (22) does not depend on h, but may depend on qðjÞ
vol and b

ðjÞ
vol, as well as on Tint.

We emphasize that the quantity Tint does not depend on j. Moreover, it is natural to assume that the
derivatives of the functions qðjÞ

volðx; tÞ and b
ðjÞ
volðx; tÞ are uniformly bounded with respect to j. In this case,

there will be a j-independent constant K ¼ Kðqvol; bvol; TintÞ such that 8j ¼ 0; 1; 2; . . . : Kj 6K. Then, using

representations (21) one can easily transform the individual convergence estimates (22) into the overall

temporally uniform grid convergence estimate for p and u that would hold for tP 0 and x 2 SðtÞ:

kpðx; tÞ � phðx; tÞk6mKha;

kuðx; tÞ � uhðx; tÞk6mKha:
ð23Þ

In formulae (23), phðx; tÞ ¼
Pm2

j¼m1
pðjÞ
h ðx; tÞ and uhðx; tÞ ¼

Pm2

j¼m1
u

ðjÞ
h ðx; tÞ. A detailed proof of this result

for the wave equation can be found in [12].

In practical terms, the temporally uniform grid convergence guaranteed by estimates (23) means that

accuracy of the numerical solution of system (10), if computed using lacunae, i.e., by solving a set of

systems (18) and then employing representation (21), will not deteriorate even when system (10) is inte-

grated over arbitrarily long time intervals. In other words, one should expect that there will be no long-time

error buildup. This is, in fact, a key distinction between the foregoing lacunae-based algorithm and tra-

ditional time-marching techniques that may be applied to computing the unsteady acoustic fields.

Indeed, the phenomenon of error accumulation during long runs is well known in the context of building
computational methods for time-dependent problems. This issue has been recognized in the literature as an



634 S.V. Tsynkov / Journal of Computational Physics 189 (2003) 626–650
outstanding unresolved question in numerical PDEs for many years, since the first systematic convergence

studies for discrete approximations have been conducted in the fifties. At the analysis stage, it manifests

itself by the growth of the stability constants with time. If, for example, system (10) needs to be integrated

over the interval ½0; Tfinal�, then the stability constant of the scheme will, generally speaking, depend on Tfinal:

K ¼ Kð�; TfinalÞ, and will actually increase with the increase of Tfinal. This is, of course, the exact same

phenomenon as the dependence of Kj on Tint in formulae (22). The growth of the stability constants with

Tfinal is equivalent to non-uniformity of the grid convergence in time, and all conventional discrete ap-

proximations that can be and are used in modern numerical methods are known to suffer from this defi-
ciency. In practice, this implies that any given approximation can be used for only a limited interval of time

if the acceptable level of error is prescribed. To advance further in time with no loss of accuracy a finer

approximation is needed from the very beginning, which obviously prompts the increase of the overall

computational cost. The latter increase may quickly become prohibitive.

Using the language of wave physics, one can, e.g., attribute the long-term error buildup to either nu-

merical dissipation, or dispersion (phase error), or both. But no matter what its actual mechanism is, it may

result in an unacceptable loss of accuracy by the solution within a finite period of time.

The lacunae-based algorithm allows us to circumvent this difficulty due to the temporally uniform
convergence (23). Moreover, if system (10) were to be integrated on the large interval ½0; Tfinal� using a

straightforward time-marching algorithm, it would have also required a large domain in space, of the size

roughly 2cTfinal. This is typically not feasible. On the other hand, implementation of the lacunae-based

algorithm allows us to perform the integration on the domain of a fixed and non-increasing size Z deter-

mined by formula (13).

It is important to mention that smoothness plays a key role in the design of the lacunae-based algorithm.

In particular, the function HðtÞ of (15) that helps us build the partition of unity (14) has to be chosen

sufficiently smooth so that the dependence of the stability constants Kj on the properties of individual RHSs
qðjÞ
vol and b

ðjÞ
vol, see (22), be not worse than that in the original scheme with non-partitioned source terms. In

this paper, we leave out the detailed analysis that involves the quantitative smoothness characteristics, and

instead refer the reader to our previous work [12].

Implementation of the lacunae-based algorithm now needs to be discussed. In theory, system (18) for

every given j ¼ 0; 1; 2; . . . should be integrated on its own auxiliary region of size Z, see (13), centered

around the domain SðtðjÞ0 Þ, where tðjÞ0 ¼ ðrj � 1
2
ÞT and the location of SðtðjÞ0 Þ is, in turn, determined by the

reference point x0ðtðjÞ0 Þ, see formula (9). However, it is more convenient to consider periodic boundary

conditions with the period Z in all coordinate directions. In this case, motion (9) should be interpreted as
the motion on a three-dimensional toroidal surface, and all spatial locations shall be converted to the

periodic setting: x 7!~xx � ð~xx1;~xx2;~xx3Þ, where ~xxi ¼ xi � ½xi=Z�Z, i ¼ 1; 2; 3. In so doing, all systems (18) can

basically be solved on one and the same domain with periodic boundary conditions, because it obviously

does not matter where on the period the ‘‘initial’’ domain SðtðjÞ0 Þ is located for every j ¼ 0; 1; 2; . . . More-

over, while the most universal formulation would imply choosing the same period Z for all the coordinates,

in the case when motion (9) is characterized by a predominant direction, the periods in the directions

orthogonal to that can be chosen smaller. For subsequent analysis in the current paper, the periodic setup

will always be assumed.
Next, let us recast each formula (21) for the discrete case (subscript ‘‘h’’) in the form of a difference
phðx; tÞ ¼
Xm2

j¼m1

pðjÞ
h ðx; tÞ ¼

Xm2

j¼0

pðjÞ
h ðx; tÞ �

Xm1�1

j¼0

pðjÞ
h ðx; tÞ;

uhðx; tÞ ¼
Xm2

j¼m1

u
ðjÞ
h ðx; tÞ ¼

Xm2

j¼0

u
ðjÞ
h ðx; tÞ �

Xm1�1

j¼0

u
ðjÞ
h ðx; tÞ:

ð24Þ
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Existence of the upper limit j ¼ m2 in the summation (21) or (24) is due to the causality which is always a

factor, and has nothing to do with the lacunae. Therefore, each minuend in formulae (24),
Pm2

j¼0p
ðjÞ
h ðx; tÞ orPm2

j¼0u
ðjÞ
h ðx; tÞ, could have simply been obtained by a straightforward time-marching of system (10) on the

interval ½0; tÞ in the foregoing periodic setting, with absolutely no regard to either the partition (16) or split

systems (18). The full quantity, phðx; tÞ or uhðx; tÞ, cannot, of course, be obtained by only marching. To

properly address the presence of the subtrahends
Pm1�1

j¼0 pðjÞ
h ðx; tÞ and

Pm1�1

j¼0 u
ðjÞ
h ðx; tÞ in formulae (24), let us

first symbolically write down the time-marching scheme that would apply to system (10), as well as to all

systems (18)

phðx; t þ DtÞ ¼ P phðx; tÞ; uhðx; tÞ; qvolðx; tÞð Þ;
uhðx; t þ DtÞ ¼ U phðx; tÞ; uhðx; tÞ; bvolðx; tÞð Þ:

ð25Þ

Scheme (25) is chosen two-level explicit for simplicity only, this is by no means a limitation, and the analysis

for multi-level schemes can be found in [12]. Consider now a particular moment of time t that corresponds
to the change in the lower summation limit in formulae (21), and accordingly (24), from j ¼ m1 to

j ¼ m1 þ 1, i.e., such t that

t þ Dt � Tint

T
þ 1

2

� ��
r

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m1þ1

¼ t � Tint

T
þ 1

2

� ��
r

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m1

þ1: ð26Þ

Combining formulae (24) and (25), we will then have

phðx; t þ DtÞ ¼ P phðx; tÞ; uhðx; tÞ; qvolðx; tÞð Þ � pðm1Þ
h ðx; t þ DtÞ;

uhðx; t þ DtÞ ¼ U phðx; tÞ; uhðx; tÞ; bvolðx; tÞð Þ � u
ðm1Þ
h ðx; t þ DtÞ:

ð27Þ

In other words, when the current moment of time t satisfies the ‘‘switch’’ condition (26), the terms

pðm1Þ
h ðx; t þ DtÞ and u

ðm1Þ
h ðx; t þ DtÞ need to be explicitly subtracted from the respective overall expressions,

see (27), on top of the standard time-marching step as per (25). This basically amounts to the required change

of the upper summation limit in both subtrahends of formulae (24) from m1 � 1 to m1. We will also assume

hereafter that similar to the original differential equations (10), the scheme (25) will satisfy the linear su-

perposition principle. Then, the next time step after the one defined by formulae (27), i.e., the step

t þ Dt 7! t þ 2Dt, shall only be done by marching (25). Indeed, the subtracted quantities pðm1Þ
h ðx; t þ DtÞ and

u
ðm1Þ
h ðx; t þ DtÞ will carry over to all the steps that follow (27) due to the linearity. The genuine ‘‘unper-

turbed’’ marching can thus continue till the next switching moment t, i.e., till condition (26) is satisfied by

m1 þ 2 and m1 þ 1. At this moment, the quantities pðm1þ1Þ
h ðx; t þ DtÞ and u

ðm1þ1Þ
h ðx; t þ DtÞ will need to be

subtracted, and then the procedure will cyclically repeat itself.

Thus, the lacunae-based algorithm can be implemented as a conventional time-marching procedure

supplemented by repeated subtraction of the retarded terms. The subtraction moments are known up-front

and separated from one another by equal time increments. The subtracted terms pðm1Þ
h ðx; t þ DtÞ and

u
ðm1Þ
h ðx; t þ DtÞ are legitimately called retarded because for a given moment of time t that satisfies (26), they

are generated by the RHSs qðm1Þ
vol and b

ðm1Þ
vol that are active in the past, on the time interval:

½tðm1Þ
0 ; tðm1Þ

0 þ T � ¼ ½ðrm1 � 1
2
ÞT ; ðrm1 þ 1

2
ÞT � ¼ ½t � Tint; t � Tint þ T �. Of course, the actual subtracted quanti-

ties pðm1Þ
h ðx; t þ DtÞ and u

ðm1Þ
h ðx; t þ DtÞ need to be re-computed for every m1 independently of the primary

time-marching procedure. This is done by means of the same scheme (25) applied to the corresponding

system (18).

To conclude this section, we note that the original idea behind using the lacunae is to keep the number of

terms in sums (21) or (24) fixed and non-increasing, while still guaranteeing that the solution for x 2 SðtÞ
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will be the same as if we integrated system (10) continuously starting from t ¼ 0. Besides, existence of the

lower summation limit j ¼ m1 in (21) and (24), i.e., repeated subtraction of the retarded terms, serves an

additional important purpose. It keeps the reflected waves from coming back into the domain SðtÞ after the

time interval Tint has elapsed since the inception of any given component (16) of the RHS. Unless explicitly

subtracted, these waves generated by the sources qðjÞ
vol and b

ðjÞ
vol on the time interval ½tðjÞ0 ; tðjÞ0 þ T � for every

given j, will start ‘‘contaminating’’ the solution on SðtÞ right after the moment tðjÞ0 þ Tint.
5. Lacunae-based ABCs

Suppose that the original formulation of the problem that we want to solve involves the entire space R3,

but we are only interested to find a fragment of the overall solution defined on the domain SðtÞ. As in

Section 4, the latter is supposed to have a fixed shape and finite size, but is allowed to move according to the

law (9). While not making any specific assumptions regarding the nature of the phenomena/processes that

are going on inside SðtÞ, we assume that outside SðtÞ, i.e., 8t > 0 and x 62 SðtÞ, the appropriate model would

be based on the homogeneous acoustics system

1

c2
opðx; tÞ

ot
þ q0r � uðx; tÞ ¼ 0;

q0

ouðx; tÞ
ot

þ rpðx; tÞ ¼ 0:

ð28Þ

We assume that the overall problem, i.e., the interior one that we do not specify, combined with the

exterior one, which is governed by system (28), is uniquely solvable on R3. In other words, our model

may include some possibly complex phenomena confined to the bounded region SðtÞ that manifest

themselves by the acoustic sound in the far field. The objective is to actually solve the problem on the

domain SðtÞ using a numerical method, but truncate all of its exterior replacing it with the ABCs on

the external boundary of SðtÞ. The ideal or exact ABCs would make the foregoing replacement
equivalent, which means that the solution obtained this way would coincide on SðtÞ with the corre-

sponding fragment of the original infinite-domain solution. The latter, however, is not actually available

because the far-field sound propagation governed by (28) cannot be computed directly at an acceptable

cost.

From the viewpoint of an observer inside SðtÞ, the role of the ABCs at oSðtÞ is only to guarantee that this

boundary will behave exactly as if the domain SðtÞ were surrounded by an infinite linear isotropic sound-

conducting medium. In particular, the boundary oSðtÞ may not reflect, fully or partially, any outgoing

waves. Therefore, as far as the ABCs are concerned, we indeed do not have to be very specific regarding the
nature of the problem inside SðtÞ, provided that the overall interior/exterior problem does have a unique

solution.

The latter assumption is of central importance. However, justifying it for every particular formulation is

beyond the scope of the current paper. For example, the overall problem may be linear, and therefore,

uniquely solvable, such as acoustic scattering from a given solid inside SðtÞ. On the other hand, one may

consider a substantially more complex model inside SðtÞ, such as the unsteady flow around a maneuvering

aircraft. The flow linearizes in the far field thus reducing the original Euler�s equations to system (28) at a

distance from the aircraft. In this case, justifying the overall solvability theoretically is difficult at best.
Besides, linearization in the far field is only an approximation that becomes more accurate the further away

from the aircraft it is introduced. This is going to affect the final accuracy of the resulting ABCs. 2
2 Our previous steady-state ABCs for external flows [22] were based on the far-field linearization and have still proven superior to

other methods.
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Hereafter, we will not be primarily concerned with either the validity of the linear model (28) outside SðtÞ,
or with the overall solvability issue. We will rather focus on constructing the ABCs under these assumptions

keeping in mind that they may need to be corroborated independently for each specific case.

There will be two stages in constructing the ABCs. First, an auxiliary problem will be formulated

that will have the exact same solution outside SðtÞ as the original combined problem does, but will be

linear throughout the entire space R3 and will be driven by the specially derived source terms con-

centrated only inside SðtÞ. In other words, this problem will be of the type considered in Section 4.

Next, the auxiliary problem will be solved on a domain slightly larger than SðtÞ using the lacunae-based
methodology of Section 4, and its solution obtained right outside SðtÞ will be used to supply the

boundary conditions for the original interior problem solved inside SðtÞ. In practice, the two afore-

mentioned stages will be meshed together so that both the interior problem and the auxiliary problem

are time-marched concurrently. The entire algorithm will be implemented directly on the discrete

level.

We note that the intention to use lacunae for solving the auxiliary problem imposes a certain restriction

on the class of admissible formulations, because by doing so the acoustic far field is assumed vorticity free.

It is also known, however, that for the linearized flows the vortical and acoustic modes essentially
decouple. This suggests that the proposed methodology can potentially be used to set the ABCs for the

acoustic part only, whereas for vorticity a different method may be employed (convection along entropy

characteristics).

Let us define a subdomain SeðtÞ � SðtÞ such that x 2 SeðtÞ if and only if x 2 SðtÞ and distðx; oSðtÞÞ > e,
where e > 0, and introduce a multiplier function l ¼ lðx; tÞ that is smooth across the entire space and

8t > 0 satisfies

lðx; tÞ �
0; x 2 SeðtÞ;
1; x 62 SðtÞ;
2 ð0; 1Þ; x 2 SðtÞ n SeðtÞ:

8<
: ð29Þ

The curvilinear strip SðtÞ n SeðtÞ of width � adjacent to the boundary oSðtÞ of the domain SðtÞ from inside

will hereafter be called the transition region.

Assume now that the solution to the combined interior/exterior problem is known on R3 for t > 0.

Clearly, it should satisfy pðx; 0Þ ¼ 0 and uðx; 0Þ ¼ 0 for x 2 R3 n Sð0Þ. It is also important to realize that the

unknown quantities inside and outside SðtÞ do not necessarily have to be the same. For example, if the

interior problem is that of the flow around an aircraft, then the unknowns inside SðtÞ will be the actual flow

variables, whereas the variables pðx; tÞ and uðx; tÞ in system (28) that is used outside SðtÞ are perturbations

with respect to the corresponding background. We can, however, assume with no loss of generality that the
definitions of the interior and exterior quantities are equivalent on the (narrow) transition region

SðtÞ n SeðtÞ. In the foregoing example with an aircraft, this assumption would imply that linearization in the

transition region is still valid.

Having re-defined the interior solution in terms of the exterior quantities on SðtÞ n SeðtÞ, we multiply the

overall solution everywhere by lðx; tÞ of (29)

pðx; tÞ 7!lðx; tÞpðx; tÞ � p̂pðx; tÞ;
uðx; tÞ 7!lðx; tÞuðx; tÞ � ûuðx; tÞ:

ð30Þ

We emphasize that in order to obtain p̂pðx; tÞ and ûuðx; tÞ, see (30), we do not need to know pðx; tÞ and uðx; tÞ
on SeðtÞ, because the multiplier l is equal to zero there anyway. Moreover, multiplication (30) will not

change any quantities on R3 n SðtÞ. With that in mind, we apply the differential operator from the left-hand

side of system (28) to the modified solution p̂pðx; tÞ, ûuðx; tÞ, see (30), and obtain
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1

c2
op̂p
ot

þ q0r � ûu ¼
0; x 62 SðtÞ n SeðtÞ;
q0q̂qvol; x 2 SðtÞ n SeðtÞ;

(

q0

oûu

ot
þ rp̂p ¼

0; x 62 SðtÞ n SeðtÞ;
b̂bvol; x 2 SðtÞ n SeðtÞ:

( ð31Þ

The result will indeed be zero on SeðtÞ, see (31), because lðx; tÞ ¼ 0 for x 2 SeðtÞ. The result is also zero on
the entire exterior domain R3 n SðtÞ, see (31), because system (28) holds there, and the quantities p̂pðx; tÞ and

ûuðx; tÞ coincide with pðx; tÞ and uðx; tÞ, respectively, on R3 n SðtÞ, as the second identity (29) combined with

definitions (30) suggest. The result in (31) may differ from zero only in the transition region SðtÞ n SeðtÞ,
where we actually generate the RHSs q̂qvolðx; tÞ and b̂bvolðx; tÞ. Note, the smoothness of the original solution

pðx; tÞ, uðx; tÞ, as well as that of the multiplier lðx; tÞ, guarantee that these new auxiliary sources q̂qvolðx; tÞ
and b̂bvolðx; tÞ will be smooth compactly supported functions. In Fig. 1, we schematically depict the geometry

of the region on which the auxiliary sources are defined.

Next, we substitute the auxiliary sources q̂qvolðx; tÞ and b̂bvolðx; tÞ of (31) into the RHS of system (10) and
integrate the latter subject to the homogeneous initial conditions. Because of the overall regularity that we

have assumed ahead of time, the solution of this new problem that we will further refer to as the auxiliary

problem, will be unique and will coincide with the modified functions p̂pðx; tÞ and ûuðx; tÞ of (30) on the entire

space. This means that on R3 n SðtÞ the solution to the auxiliary problem will coincide with the original

exterior solution pðx; tÞ, uðx; tÞ. We emphasize that we do not need to explicitly know the original exterior

solution on R3 n SðtÞ in order to obtain the source terms q̂qvolðx; tÞ and b̂bvolðx; tÞ that drive the auxiliary

problem, we only need to know that it satisfies the homogeneous acoustics system (28).

Altogether, we have split the original problem into two: The linear auxiliary problem that needs to be
solved on the entire space, and the interior problem on SðtÞ that will be integrated with the external

boundary data provided by the solution of the auxiliary problem. However, to apply the lacunae-based

algorithm of Section 4 to the auxiliary problem, it may need to be modified. Namely, conservativeness of

the auxiliary forcing b̂bvol of (31) must be maintained so that to guarantee existence of the lacunae in the

auxiliary solutions, see Propositions 1 and 2. Let us assume that in the original combined problem the

velocity potential does exist in the solutions of system (28) on R3 n SðtÞ. It is reasonable to think that it will
Fig. 1. Schematic geometry of the auxiliary sources region.
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exist on the transition region SðtÞ n S�ðtÞ as well, and that altogether the potential function uðx; tÞ will be

smooth. However, multiplication (30) may ruin the conservativeness. As such, we can first reconstruct the

velocity potential uðx; tÞ for x 2 SðtÞ n S�ðtÞ based on the computed interior quantities, multiply it by l, and
only then obtain the modified velocity vector ûuðx; tÞ, thus replacing (30) with the following steps:

pðx; tÞ 7!lðx; tÞpðx; tÞ � p̂pðx; tÞ;
uðx; tÞ ¼ ruðx; tÞ; x 2 SðtÞ n S�ðtÞ;
uðx; tÞ 7!lðx; tÞuðx; tÞ � ûuðx; tÞ;
uðx; tÞ 7!rûuðx; tÞ � ûuðx; tÞ:

ð32Þ

Subsequently, the modified functions p̂pðx; tÞ and ûuðx; tÞ of (32) are substituted into (31) to obtain the

auxiliary RHSs.

The version of the algorithm that we actually implement in the current paper does include reconstruction
of the potential in accordance with (32). We realize, of course, that this is by no means a must. In fact, all

we need is a smooth extension of the exterior solution inwards that would transition to zero at a ‘‘depth’’ e,
and would also maintain conservativeness of the velocity field. There may be different ways of obtaining

this extension, not necessarily based on applying l to the interior solution on the transition region.

To set the discrete ABCs on the boundary oSðtÞ, we will need to apply the lacunae-based algorithm for

solving the auxiliary problem (10), (31), (32) on a domain slightly larger than S(t). We take d > 0 (to be

specified later) and define SdðtÞ ¼ fðx; tÞ jdistðx; SðtÞÞ < dg; clearly, SeðtÞ � SðtÞ � SdðtÞ, see Fig. 1. We also

replace diamSðtÞ ¼ d by diamSdðtÞ ¼ d þ 2d in the formulae for the integration interval and auxiliary
domain size [cf. (13) and (20)]:

Tint ¼
ðd þ 2dÞ þ T ðc þ kÞ

c � k
; Z ¼ ðd þ 2dÞ þ ðc þ kÞTint: ð33Þ

Next, assume that there is a space-time grid N � T, on which a discrete approximation to the auxiliary

problem is built. The spatial grid N consists of the nodes n in the three-dimensional space, whereas the

temporal grid T is composed of the time levels l ¼ 0; 1; 2; . . . The grid N is actually introduced on the

auxiliary domain of size Z given by (33), and periodic boundary conditions are imposed. As no grid ad-

aptation is needed, it is most convenient to simply use a uniform Cartesian grid. We also note that the
original problem solved inside SðtÞ does not have to be approximated on the same grid. In the most general

situation, we will have different grids for the interior problem and for the exterior/auxiliary problem. Then,

in the transition region SðtÞ n SeðtÞ, where the definitions of the unknown quantities for both problems are

equivalent, we may need to employ a chimera-type grid strategy, i.e., interpolate in-between the overlapping

grids. For the analysis in the current paper, however, we will simply assume that the quantities from the

interior solution are already available on the grid sub-domain fN � Tg \ fSðtÞ n SeðtÞg.
Let us denote by Nl, l ¼ 0; 1; 2; . . ., the corresponding time levels of the grid N � T, and by Sl

n the stencil

of the scheme associated with the node ðn; lÞ 2 N � T. For simplicity, we will assume that the auxiliary
problem (10), (31), (32) is time-marched by an explicit scheme, and that the node ðn; lÞ 2 Sl

n is the actual

upper-level node on the q þ 1-level stencil, i.e., Sl
n \ fN � Tg � fNl [ Nl�1 [ � � � [ Nl�qg and

Sl
n \Nl ¼ ðn; lÞ. In Section 4, we have assumed q ¼ 1, see formula (25). Denote by Nl

þ the sub-grid of Nl

that belongs to the interior domain, i.e., Nl
þ ¼ Nl \ SðtlÞ, where tl is the lth time level in actual units

(‘‘seconds’’), in the simplest case tl ¼ lDt. Then, introduce the sum of the interior sub-grids for all time

levels: Nþ ¼ N0
þ [ N1

þ [N2
þ [ � � � � N � T. Finally, consider a somewhat larger sub-grid of N � T:

~NNþ ¼ [
ðn;lÞ2Nþ

Sl
n, which is simply a composition of all the stencils Sl

n obtained when the upper-level node

ðn; lÞ sweeps the grid Nþ; clearly, Nþ � ~NNþ. The part of the grid ~NNþ that does not belong to Nþ is called the

grid boundary and is denoted c ¼ ~NNþ n Nþ. We will require that the domain SdðtlÞ be chosen so that on
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every time level tl, l ¼ 0; 1; 2; . . ., all of the grid ~NNl
þ belong to this domain: ~NNl

þ � SdðtlÞ; equivalently, we

may require that cl � SdðtlÞ. We note that the grid boundary c is a narrow fringe of grid nodes that follows

the geometry of oSðtÞ. Therefore, the parameter d may be chosen small, on the order of a few grid sizes

depending on the specific structure of Sl
n. We also note that the way we have introduced the grid boundary

c is actually a simplified interpretation of the rigorous general construction that is a part of the definition of

discrete Calderon�s potentials and boundary projection operators, the latter are used in [14] as a universal

apparatus for setting the ABCs.

We will now describe one time step of the combined time-marching algorithm that involves the lacunae-
based ABCs. We will assume that all time steps are identical and as such, will provide an inductive de-

scription of the algorithm.

Suppose that we have obtained the solution for up to a given time level l. This means that the solution is

known not only on the interior domain, but also on the grid boundary—at the levels cl; . . . ; cl�q that are

immediately needed for advancing the next time step, as well as at all the preceding levels. In particular, one

may think about starting the computation from the known (homogeneous) initial conditions. First, we

make one interior time step and obtain the discrete solution everywhere inside including the transition

region, i.e., the grid area Nlþ1 \ fSðtlþ1Þ n Seðtlþ1Þg, where the solution is assumed to be defined in terms of
the exterior acoustic quantities pðx; tÞ and uðx; tÞ. Then, we perform the modification (32) in the discrete

framework, which involves reconstruction of the velocity potential on the grid in the transition region

Sðtlþ1Þ n Seðtlþ1Þ. A straightforward approach to that is contour integration along the grid lines; it has

proven quite robust in our simulations, see Section 6, taking in to account that the potential only needs to

be reconstructed on a narrow near-boundary strip. Having gotten the modified quantities (32) on the grid

sub-domain Nlþ1 \ fSðtlþ1Þ n Seðtlþ1Þg, we apply the discrete version of (31) and obtain one more time level

of the discrete auxiliary RHSs. If the scheme written on the stencil Sl
n approximates system (10) with the

design accuracy at some node ðn � n0; l � l0Þ 2 S
l
n (clearly, l0 6 q), then the discrete RHSs should be re-

ferred to this same node ðn � n0; l � l0Þ and as such, advancing the interior solution till ðl þ 1Þ would mean

building the auxiliary RHSs till ðl þ 1 � l0Þ. Next, we make one time step for the auxiliary problem with

these newly updated RHSs, and obtain its solution on Nlþ1 \ Sdðtlþ1Þ. Since we have chosen d > 0 so that
~NNlþ1

þ � Sdðtlþ1Þ, we determine that the solution to the auxiliary problem will, in particular, be available on

clþ1. This concludes one full time step, because once we know the solution on all time levels up to ðl þ 1Þ
everywhere including the grid boundary, we can advance the next interior time step, etc.

The lacunae-based methodology for solving the auxiliary problem includes cyclic subtractions (27) of the

retarded terms on top of the straightforward time-marching. It is important to realize that once a particular
component has been subtracted, there will never be a need to analyze/incorporate it again in the course of

computation. In other words, the subtracted terms are completely disregarded from the moment of sub-

traction further on. Therefore, the corresponding partition elements (16) of the auxiliary RHSs can be

disregarded as well. Consequently, even when integrating over arbitrarily long time intervals, we only need

to keep a finite amount of the past information, namely, the auxiliary RHSs (31) defined on the interval of

duration Tint, see (33), that immediately precedes the current moment of time. This makes the extent of

temporal non-locality of the proposed ABCs fixed and limited.

The proposed ABCs guarantee that the external artificial boundary be completely transparent for all the
outgoing waves. Indeed, they simply allow these waves to propagate beyond the boundary and then prevent

reflections from re-entering the domain by eliminating the retarded components of the solution in a timely

fashion. The ABCs-related computer expenses per unit time or per time step remain fixed and non-growing,

which is accounted for by the lacunae-based integration. For explicit schemes, the operation count is

proportional to the number of auxiliary grid nodes. The overall actual cost is, of course, higher than it

would have been if the integration was performed on the domain SðtÞ only, because the auxiliary domain is

larger. The relation between the sizes is given by (33), and it also roughly indicates what the ratio of the

work may be. However, we obviously cannot integrate on SðtÞ alone, without boundary conditions. In this
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perspective, the overall performance assessment must include the increase of the cost that should be

‘‘weighted against’’ other characteristics such as accuracy of the boundary treatment and the range of

problems that can be analyzed.
6. Numerical demonstrations

For our numerical simulations, we assume axial symmetry and employ the ðr; zÞ cylindrical coordinates
to account for the important three-dimensional effects using a two-dimensional spatial geometry. Let

u ¼ uðr; z; tÞ and w ¼ wðr; z; tÞ be the radial and axial components of the acoustic velocity, respectively, and

let p ¼ pðr; z; tÞ still denote the acoustic pressure. Let us also assume that q0 ¼ 1. Then, system (10) becomes

1

c2
op
ot

þ 1

r
oðruÞ
or

þ ow
oz

¼ qðr; z; tÞ;

ou
ot

þ op
or

¼ brðr; z; tÞ;

ow
ot

þ op
oz

¼ bzðr; z; tÞ:

ð34aÞ

On the axis r ¼ 0 system (34a) changes. Namely, all the quantities involved must be continuous and

bounded. Then, for the pressure, which is a scalar quantity, the axial symmetry (independence on the polar

angle) implies: op
or jr¼0 ¼ 0. For the velocity, which is a vector quantity, we obtain uð0; z; tÞ ¼ 0 and ow

or jr¼0 ¼ 0.

Next, using Taylor�s expansion for r � 1, we have uðr; �Þ ¼ u0ð0; �Þr þ oðrÞ and consequently,

1

r
oðruÞ
or

¼ 1

r
oðr2u0ð0; �ÞÞ

or
þ oð1Þ;

which means that 1
r
oðruÞ
or jr¼0 ¼ 2 ou

or jr¼0. Therefore, for r ¼ 0 system (34a) transforms into the system of two

equations

1

c2
op
ot

þ 2
ou
or

þ ow
oz

¼ qð0; z; tÞ;

ow
ot

þ op
oz

¼ bzð0; z; tÞ;
ð34bÞ

and the radial momentum equation degenerates for r ¼ 0.

The domain SðtÞ will be a ball of fixed diameter d centered on the z axis, with the given axial velocity and

coordinate of the center [cf. formulae (9)]

w0 ¼ w0ðtÞ; z0 ¼ z0ðtÞ ¼
Z t

0

w0ðsÞds: ð35Þ

Obviously, as the motion (35) is aligned with the axis r ¼ 0, it does not break the axial symmetry. We take

the diameter d ¼ 1:8 and the speed of sound c ¼ 1; the functions w0ðtÞ, and z0ðtÞ of (35) will be specified

later.
The auxiliary domain is a rectangle ½0;R� � ½�Z=2; Z=2� of variables ðr; zÞ, with the actual sizes R ¼ p and

Z ¼ 2p. The boundary conditions for all variables are periodic with the period Z of (33) in the z direction

fp; u;wgðr; z � Z; tÞ ¼ fp; u;wgðr; z; tÞ: ð36aÞ

In the radial direction, the boundary conditions cannot be periodic because of the geometry/symmetry

considerations. At r ¼ 0, there is no need for the boundary conditions at all; instead, we have system (34b)
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and uð0; z; tÞ ¼ 0. At r ¼ R, the boundary conditions need to be provided for the homogeneous counterpart

of system (34a), and we set

pðR; z; tÞ ¼ 0;
oðruÞ
or

jr¼R ¼ 0; wðR; z; tÞ ¼ 0: ð36bÞ

We note that the reflecting properties of boundary conditions (36a) and (36b) are basically immaterial for

reconstructing the infinite-domain solution on SðtÞ, as long as the geometric restrictions discussed in the

beginning of Section 4 are honored. We only need to make sure that the auxiliary problem is uniquely

solvable, which boundary conditions (36a), (36b) do provide for. We leave out a detailed justification of the

latter statement, only mention that the homogeneous Robin boundary condition (36b) for u follows from

the homogeneous Dirichlet boundary conditions (36b) for p and w combined with the homogeneous
counterpart of the continuity equation in system (34a).

The acoustic test solution that we will be validating our numerical method on is supposed to have a

conservative velocity field. Therefore, it will be convenient to first construct the test solution for the po-

tential, and then, by differentiating it, obtain the acoustic quantities, see (6). The latter will subsequently be

reconstructed by integrating numerically the acoustics system, and continuous and discrete quantities will

be compared against one another.

According to Proposition 1, velocity potential must satisfy the wave equation. For the moment,

let us assume that this wave equation is driven by a moving point source with the amplitude v ¼ vðtÞ
[cf. Eq. (1a)]

1

c2
o2u
ot2

� Du ¼ vðtÞdðx � x0ðtÞÞ � f ðx; tÞ: ð37Þ

Solution of Eq. (37) can be obtained as convolution with the fundamental solution of the wave equation,

E ¼ HðtÞ
4p

dðjxj � ctÞ
t

;

see, e.g. [15], where HðtÞ is the Heaviside function, and dðjxj � ctÞ is a single layer of unit magnitude on the

expanding sphere of radius ct [cf. formula (2)]

u ¼ E � f ¼ 1

4p

Z 1

0

ds
Z
R3

dðjx � nj � cðt � sÞÞ
t � s

vðsÞdðn � x0ðsÞÞdn

¼ 1

4p

Z 1

0

dðjx � x0ðsÞj � cðt � sÞÞ
t � s

vðsÞds

¼ 1

4p

Z 1

jxj

jx � x0ðsÞjdðm � ctÞ
ðcjx � x0ðsÞj � hx � x0ðsÞ; u0ðsÞiÞðt � sÞ vðsÞdm

¼ 1

4p
cvðsÞ

cjx � x0ðsÞj � hx � x0ðsÞ; u0ðsÞi

����
m¼ct

: ð38Þ

In formula (38), h�; �i denotes the dot product. For the integration, we have introduced a new variable

m ¼ jx � x0ðsÞj þ cs as done in [23, Chapter 7]. Evaluating the last expression in (38) for m ¼ ct requires

solving equation

jx � x0ðsÞj þ cs ¼ ct ð39Þ

with respect to s. Solution of Eq. (39) determines the retarded moment of time, at which the trajectory of

the point source intersects the lower portion of the characteristic cone with the vertex ðx; tÞ. For the case of
a straightforward uniform motion, Eq. (39) is quadratic, and its solution s, once substituted in (38), yields
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uðx; tÞ that can also be obtained via the Lorentz transform, as done in [12,13]. In general however, one

should not expect to be able to solve the non-linear Eq. (39) in the closed form.

Let us now take into account the cylindrical symmetry and straightforward motion (35). Then, formulae

(38) and (39) reduce to

uðr; z; tÞ ¼ 1

4p
cvðsÞ

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� z0ðsÞÞ2

q
� ðz � z0ðsÞÞw0ðsÞ

�������
m¼ct

ð40Þ

and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz � z0ðsÞÞ2

q
þ cs ¼ ct; ð41Þ

respectively. Assuming that k1 6w0ðtÞ6 k2, where k1 and k2 are known, we solve Eq. (41) by Newton�s
method with the initial guess s0 given by the solution of the quadratic equation r2 þ ðz � 1

2
ðk1 þ k2Þs0Þ2 ¼

cðt � s0Þ2 that satisfies s0 < t. The actual law of motion that we specify is [cf. formulae (35)]

z0ðtÞ ¼ t
10

h i
þ 1

2
1

�
þ 15

8
s � 5

4
s3 þ 3

8
s5
�
; s ¼ 2

t
10

n o�
� 1

2

�
; ð42Þ

where ½�� denotes the integer part, as before, and f�g denotes the fractional part. The motion (42) basically

consists of repeated acceleration/deceleration cycles of duration 10, so that during each cycle the source

travels a total distance of 1 along the z axis. Both the velocity w0ðtÞ ¼ z00ðtÞ and the acceleration a0ðtÞ ¼ z000ðtÞ
determined by (42) are continuous functions of time, and 0 ¼ k1 6w0ðtÞ6 k2 ¼ 0:1875, i.e., the subsonic

condition is met.

Solution (40) for the potential is singular, and cannot be used directly to derive the acoustic quantities

needed for testing the numerical procedure. To remove the singularity, we introduce a new smooth function

G ¼ Gð~rrÞ of the variable ~rr ¼ ~rrðr; z; tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz � z0ðtÞÞ2

q
such that Gð~rrÞ � 1 for ~rrP ðjd=2Þ, where j < 1,

and also such that at least Gð0Þ ¼ G0ð0Þ ¼ G00ð0Þ ¼ G000ð0Þ ¼ 0. Then, the new function uðr; z; tÞ � Gð~rrÞ is

continuous and bounded everywhere. By differentiating it, we define the components of the reference

acoustic solution [cf. formulae (6)]

pðr; z; tÞ ¼ � o

ot
uðr; z; tÞ � Gð~rrÞ

� �
;

uðr; z; tÞ ¼ o

or
uðr; z; tÞ � Gð~rrÞ

� �
;

wðr; z; tÞ ¼ o

oz
uðr; z; tÞ � Gð~rrÞ

� �
;

ð43Þ

which are regular functions as well. Note that u of (40) is a retarded potential; therefore, differentiation (43)

involves implicit differentiation of s via (41). At the same time, the definition of Gð~rrÞ does not involve any

retardation.

The variables p, u, and w of (43) satisfy the homogeneous version of the acoustics system (34a) for
~rr > ðjd=2Þ, where we have taken j ¼ 0:8. Inside the smaller ball, i.e., for ~rr6 ðjd=2Þ, substitution of p, u,
and w of (43) into the left-hand side of system (34a) will produce the corresponding source terms q, br, and
bz. Note, when removing the singularity of the solution we have required that sufficiently many derivatives

of G be equal to zero at ~rr ¼ 0; consequently, the RHSs due to the quantities (43) substituted into (34a) will

have no singularities either. Altogether, we have therefore obtained a reference acoustic solution, which is

regular everywhere, and which can be said to be generated by the sources concentrated inside the moving
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domain SðtÞ. Outside SðtÞ, our reference solution is basically a system of unsteady acoustic waves radiated

by and propagating away from a moving source. We are going to reconstruct this solution numerically on

the domain SðtÞ, and set the discrete lacunae-based ABCs on its outer boundary oSðtÞ according to the

methodology of Section 5.

The acoustics system (34a) is approximated numerically on the Cartesian grid

ri ¼ iDr; Dr ¼ R=Nr; i ¼ 0; 1; . . . ;Nr;

zj ¼ jDz; Dz ¼ Z=2Nz; j ¼ 0;�1; . . . ;�Nz;
ð44Þ

using a second-order staggered finite-difference scheme

1

c2

plþ1

iþ1
2
;j
� pl

iþ1
2
;j

Dt
þ 1

riþ1
2

riþ1u
lþ1

2

iþ1;j � riu
lþ1

2
i;j

Dr
þ
w

lþ1
2

iþ1
2
;jþ1

2

� w
lþ1

2

iþ1
2
;j�1

2

Dz
¼ q

lþ1
2

iþ1
2
;j
;

u
lþ1

2
i;j � u

l�1
2

i;j

Dt
þ
pl
iþ1

2
;j
� pl

i�1
2
;j

Dr
¼ blri;j ;

w
lþ1

2

iþ1
2
;jþ1

2

� w
l�1

2

iþ1
2
;jþ1

2

Dt
þ
pl
iþ1

2
;jþ1

� pl
iþ1

2
;j

Dz
¼ blz

iþ1
2
;jþ1

2
:

ð45aÞ

Scheme (45a) can be written for i > 0, i.e., away from the axis of symmetry. For i ¼ 0, we set u
lþ1

2

0;j ¼ 0 and

approximate system (34b), which yields

1

c2

plþ1
1
2
;j

� pl1
2
;j

Dt
þ 2

Dr
u
lþ1

2
i;j þ

w
lþ1

2
1
2
;jþ1

2

� w
lþ1

2
1
2
;j�1

2

Dz
¼ q

lþ1
2

1
2
;j
;

w
lþ1

2
1
2
;jþ1

2

� w
l�1

2
1
2
;jþ1

2

Dt
þ
pl1

2
;jþ1

� pl1
2
;j

Dz
¼ blz1

2
;jþ1

2
:

ð45bÞ

Scheme (45a) is very similar to the well-known Yee scheme that was originally introduced for solving the

Maxwell equations, see [24]. Periodic boundary conditions (36a) are re-written on the grid as follows:

pliþ1
2
;Nz

¼ pliþ1
2
;�Nz

; u
lþ1

2
i;Nz

¼ u
lþ1

2
i;�Nz

; w
lþ1

2

iþ1
2
;Nzþ1

2

¼ w
lþ1

2

iþ1
2
;�Nzþ1

2

; ð46aÞ

whereas boundary conditions (36b) are discretized as

plNr�1
2
;j ¼ 0;

rNru
lþ1

2
Nr ;j � rNr�1u

lþ1
2

Nr�1;j

Dr
¼ 0; w

lþ1
2

Nr�1
2
;jþ1

2

¼ 0: ð46bÞ

We have used three successively more fine square cell grids, Dr ¼ Dz, Nr � 2Nz ¼ 64 � 128, 128 � 256,
and 256 � 512. The Courant stability constraint was applied when selecting the time step for the explicit

scheme (45a), (45b). The grid boundary c was built as outlined in Section 6, taking into account that scheme

(45a), (45b) is staggered. The latter implies that we actually have three different stencils for updating the

pressure and two velocity components that are shifted with respect to one another. Of course, the grid

boundary is constructed concurrently with the actual time-marching. The parameter d that is needed to

accommodate the width of the grid boundary c was taken d ¼ 3
2
Dr. The functions HðtÞ, lðx; tÞ, and Gð~rrÞ

introduced in order to guarantee smoothness at all the stages of the derivation, are constructed as piecewise

polynomials with four continuous derivatives everywhere. In so doing, the multiplier lðx; tÞ, see (29), is also
built as a function of ~rr only. The varying amplitude v, see (40), was chosen in the form of a harmonic

oscillation with the frequency three times that of the motion cycles (42). The width e of the transition region
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SðtÞ n SeðtÞ, see Fig. 1, varied to demonstrate different aspects of the algorithm performance. The parameter

r of (14), (15) was chosen r ¼ 3
4
. The actual temporal thickness T of each partition element was calculated

‘‘backwards’’ from (33), considering that the domain size, the maximum motion speed, see (42), and the

period Z are known. When marching the auxiliary problem, retarded components of the solution are

subtracted according to (27). Each subtracted component is recomputed as solution to the corresponding

problem (18). For a given j, this problem is inhomogeneous on the interval ½tðjÞ0 ; tðjÞ1 � � ½ðrj � 1
2
ÞT ; ðrj þ 1

2
ÞT �,

and then it remains homogeneous on the interval ½tðjÞ1 ; tðjÞ2 � � ½ðrj þ 1
2
ÞT ; ðrj � 1

2
ÞT þ Tint�. Therefore, we first

explicitly time-march this system on its interval of inhomogeneity. Then, we do the FFT of the solution in

the z direction and expansion with respect to the corresponding eigenfunctions (evaluated numerically) in

the r direction, which allows us to advance the homogeneous solution further till tðjÞ2 by simply raising the

resulting amplifications factors to the corresponding powers. We note that in so doing scheme (45a) ef-
fectively gets split into three discrete wave equations for the respective unknown quantities, because in the

cylindrical geometry different transforms along r are needed for different variables. This is the only instance

when reduction to a set of independent wave equations is employed; and it is only necessitated by a par-

ticular choice of the coordinate system. If a genuine three-dimensional computation were conducted on a

Cartesian grid, the unsplit system could have been used all along.

In Fig. 2 we present error for the acoustic pressure as it depends on time on all three grids that we have

employed. The total integration time was 100ðd=cÞ, i.e., one hundred times the interval required for the

waves to cross the domain. The error was evaluated in the maximum norm on the domain SðtÞ. We see that
the algorithm provides for no long-term error buildup, and also that it displays the design second-order grid

convergence. The oscillations in the error profiles on Fig. 2 have the period of 10 time units, and apparently

follow the acceleration/deceleration cycles of the source motion. Error profiles for the velocity components

u and w look similar and we do not present them.

We should mention that the error curves on Fig. 2 were obtained for a relatively wide transition region

SðtÞ n SeðtÞ, on the order of ten grid cell sizes. Even though the actual width of this region decreases with the

refinement of the grid, the issue of how the width e affects the algorithm performance deserves to be
Fig. 2. Grid convergence study with lacunae-based ABCs, e ¼ 10Dr.
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thoroughly addressed. From the numerical standpoint, the width of the transition region determines how

well the smooth function lðx; tÞ is resolved on the grid, and as such, how smooth the auxiliary RHSs will

effectively be. The latter, in turn, affect the quality of the discrete lacunae, i.e., how sharp the aft fronts of

the waves really are in the discrete framework. This is important because every time a retarded component

is subtracted, see (27), we assume that what is being subtracted inside the lacuna, i.e., on the domain SðtÞ, is
zero, or more precisely, a small quantity that converges to zero with the refinement of the grid; the con-

vergence, however, hinges on the smoothness of the source terms. Besides having a potential effect on the

error behavior, the width of the transition region also determines on how many grid nodes the auxiliary
RHSs are supported. We remind that those RHSs basically control the extent of temporal non-locality of

the lacunae-based ABCs. The algorithm requires keeping them on the interval of length Tint, and as such,

the more narrow the transition region is, the less additional storage is needed.

In Figs. 3–6 we are showing similar pressure error profiles for the width of the transition region

e ¼ 8; 6; 4; and 2 grid cell sizes, respectively.

We observe that with the decrease of e the error behavior deteriorates, which is natural to expect. We

also notice, though, that the deterioration is more visible on the coarser grids, whereas on the finest

256 � 512 grid it is much slower. The 256 � 512 error profile is still practically flat for e ¼ 8, see Fig. 3, and
it loses only one binary order of magnitude for e ¼ 6 over the entire long interval of integration, see Fig. 4.

Even for a rather narrow transition region, e ¼ 4, see Fig. 5, the finest grid error only grows by less than a

factor of 2 over the first half of the integration interval, which is still fifty times the time needed for the

waves to cross the domain. The rates of error increase become practically equal on all grids only for the

narrowest transition region that we have tried: e ¼ 2, see Fig. 6. Having only two grid cells in the transition

region basically implies that there is no smoothing at all, rather a sharp truncation, and instead of lðx; tÞ we

are using an equivalent of the Heaviside function on the grid. But even in this case we can see that the initial

jump of the error is much smaller on the fine grid than on the coarser grids.
As of yet, we cannot offer a rigorous theoretical explanation of why the algorithm appears more sensitive

to the quality of the discrete lacunae on coarser grids than on the fine grid. We can only qualitatively
Fig. 3. Grid convergence study with lacunae-based ABCs, e ¼ 8Dr.



Fig. 4. Grid convergence study with lacunae-based ABCs, e ¼ 6Dr.

Fig. 5. Grid convergence study with lacunae-based ABCs, e ¼ 4Dr.

S.V. Tsynkov / Journal of Computational Physics 189 (2003) 626–650 647
suggest that it has to do with the actual magnitude of those discrete ‘‘tails’’ behind the aft fronts of the

waves that are due to the ‘‘imperfections’’ in the auxiliary sources, and that apparently are still smaller on

fine grids. Altogether, this phenomenon is certainly beneficial, because fine grids are needed for high overall



Fig. 6. Grid convergence study with lacunae-based ABCs, e ¼ 2Dr.
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accuracy anyway, and at the same time they will allow to maintain high accuracy of the boundary treatment

for longer periods of time. We should also note that for many practical applications the actual integration
times will likely be not as long as those that we have used for the current proof-of-concept. This will leave

even less room for the error buildup due to the boundary treatment.
7. Conclusions

We have constructed and tested the algorithm for setting highly-accurate global artificial boundary

conditions for the computation of time-dependent acoustic waves. This work is an extension of our pre-
vious approach that applied to the scalar wave equation [13]. The algorithm is based on the presence of

lacunae (aft fronts of the waves) in the three-dimensional wave-type solutions. The ABCs are obtained

directly for the discrete formulation of the problem and can complement any consistent and stable finite-

difference scheme. In so doing, neither a rational approximation of non-reflecting kernels, nor discretization

of the continuous boundary conditions is required. The extent of temporal non-locality of the new ABCs

appears fixed and limited, and this is not a result of any approximation but rather a direct consequence of

the fundamental properties of the solution. The proposed ABCs can handle artificial boundaries of ir-

regular shape on regular grids with no fitting/adaptation needed. Besides, they possess a unique capability
of being able to handle boundaries of moving computational domains, including the case of accelerated

motion.

For the case of an acoustic source engaged in an accelerated motion, we have conducted numerical

experiments that corroborate the theoretical design properties of the algorithm. We are currently unaware

of any other acoustic ABCs� algorithm in the literature with the capability of handling the accelerated

motion. We have also shown experimentally that when a key parameter that characterizes the algorithm

changes so that to reduce the overall memory requirements, the performance of the ABCs suffers in an
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expected way. However, the deterioration of the long-term performance on fine grids is much slower than

that on coarse grids.

Finally, we should mention that even though the full description of the algorithm provided in the paper

does address a number of technical issues, its key idea is most straightforward. In one sentence it can be

formulated as follows: One should not continue the computation inside the lacuna once the solution has

become zero there due to ‘‘natural causes.’’ Otherwise the error may unwarrantably build up on one hand,

and on the other hand, the extent of the required temporal pre-history of the solution may grow un-jus-

tifiably high. The technical issues that we have discussed relate primarily to what to do with the waves
outside, and not inside, the domain of interest. In the framework of the previous analysis, we simply allow

them to propagate a certain distance away till they get reflected, and then set up the auxiliary domain so

that the reflected waves do not reach the domain of interest before it completely falls inside the lacuna. This,

however, is by no means the only possible option. In fact, any treatment of the outgoing waves that would

prevent the reflections from re-entering the domain of interest before it falls into the lacuna will be ap-

propriate. At the same time, introducing an alternative to the approach described in the current paper may

be beneficial from the standpoint of the overall computational cost. For example, a treatment of the sponge

layer type that slows down the outgoing waves, see, e.g. [25,26], may allow to reduce the size of the auxiliary
domain. Alternatively, the lacunae-based approach can be combined with a PML-based treatment for the

waves outside the domain of interest, see, e.g., the survey papers [27,28]. In any event, linearity has to be

maintained, otherwise it will not be possible to partition the problem similar to (16), (18), and (19). These

combined approaches will be subject of a future study.
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